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Collapse arresting in an inhomogeneous quintic nonlinear Schidinger model
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Collapse of (i 1)-dimensional beams in the inhomogeneous one-dimensional quintic nonlinear Schro
dinger equation is analyzed both numerically and analytically. It is shown that in the vicinity of a narrow
attractive inhomogeneity, the collapse of beams in which the homogeneous medium would blow up may be
delayed and even arrest¢&1063-651%99)03610-7
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[. INTRODUCTION above or below a threshold value, respectively. This measure

is, e.g., the beam power in optics, the number of atoms in

The spatial contraction of wave packets and the formatiorBose-Einstein condensates, and the number of excitations in

of a singularity in finite time—the wave collapse or, more plasma physics.

generally, the blowup of the wave packet—is one of the The dynamics of self-focusing waves in inhomogeneous

basic phenomena in nonlinear physics of wave systems. Exyonlinear systems has become a topic of extensive studies
amples are the self-focusing of light—3] in optics, the col-  due to the rich dynamical properties induced by the interplay
Iapsg of Langmuir waves in plasnd], the self-foCUSif)g of  petween nonlinearity, dispersion, and inhomogeneity. The
gravity-capillary surface wave$], the blowup of nonlinear  gffects of periodic spatial modulation of the refractive index

electronic excitations in molecular systef@g, and the col- - . . .
ystenéd [V(r)=v coskX)] in the spatiotemporal evolution of pulses

lapse in a Bose gas with negative scattering ler@t8]. i id v tigated USi
Wave collapse is an efficient process of energy and/or mad§ Nonlinéar waveguides were recently investigated using a
variational approach and numerical simulatiddd]|, while

localization as well as energy dissipatitsee, e.g., review n € . )
paperd9—11]). exact_sufﬂment criteria for blo_vvup were obtamed[ih?,la.

The theory of self-focusing wave packets in optics, Feit and Fleck[17] have first pointed out that if non-
plasma, and solid-state physics is based on the analysis of tiR@raxiality of the beam propagation is taken into account,
nonlinear Schidinger equatior(in the theory of the Bose- blowup does not occur. This result was further supported by
Einstein condensation this equation is called the Grossusing a collective coordinate approafts], by adding an

Pitaevskii equatioi12]) additional term that models the variation of the propagation
constant along the direction of propagatidr®] and by ap-
i 0,0+ V24t |27+ V(1) =0, (1)  plying an asymptotic analys{0,21].

The effect of disorder on the spatiotemporal evolution of

o- pulses in nonlinear waveguides were studied in R22]
where it was shown that random fluctuations delay collapse.

Also, criteria for existence and stability of stationary so-
. } ) . . i _lutions in inhomogeneous systems have attracted a lot of
propagation variablethe time variable in Bose-Einstein attention. In29] modes of an inhomogeneous structure were
theory) andr=(xy, ... Xg) is the spatial coordinate. The first found, while a generel criterion for the existence of
third term in Eq.(1) characterizes the nonlinear properties ofstable stationary solutions was derived 28].
the system: light intensity-dependent refractive index in op- In physical systems, where an excitation is located in the
tics, effective self-interaction of Langmuir waves in plasma,vicinity of a smooth bell-shaped inhomogeneity with a width
or the interaction between Bose particles, etc. Finally themuch larger than the width of the excitation, one may model
fourth term in Eq.(1) is either an inherent space-dependentthe inhomogeneity as a parabolic potential. The possibility of
refractive index of the material or an exterr@bonfining  controlling the self-focusing of nonlinear excitations in mo-
potential. Physical systems, which share the same value décular structures with parabolic-type inhomogeneities was
the factorod, possess many similar features such as stabilitynvestigated in Ref[6]. The acceleration of the collapse of
properties of the stationary solutions. It was foJi®,13 light beams in weakly nonlinear dispersive media with either

that in homogeneous SysteW(F) =0] the stationary solu- & constant or weakly oscillating parabolic density profile was
tions of Eq.(1) are stable whemrd<2 and unstable when investigated in Ref[24]. Collapse and Bose-Einstein con-
od>2 with the casecd=2 being marginal. In the latter densation in trapped Bose gas with negative scattering length
case the excitation either blows up or disperses depending dan the presence of the parabolic confining potenﬁéﬂf)
whether a certain characteristic measure of the excitation is-r?, were studied in Refs[7,8]. However, the parabolic

model breaks down when the widths of the inhomogeneity

and the excitation are of comparable size. It is the idea of this

*Permanent address: Bogolyubov Institute for Theoretical Physpaper to investigate the dynamical evolution of excitations in

ics, 252 143 Kiev, Ukraine. the presence of such narrow inhomogeneities.

where zp(F,z) is the complex amplitude of the quasimon
chromatic wave trair(the condensate wave function V?

=2id:1a)2(i is the d-dimensional Laplace operatoz,is the
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To meet this end we use the one-dimensional quintic nonthe beam ultimately disperses completely. This kind of insta-
linear Schrdinger equation(NLSE) as our model. A key bility also characterizes stationary solutions of the homoge-
element in this investigation is to show how the collapse ofneous 2D NLSE.
excitations, which are characterized as supercritical in the The presence of an inhomogeneity may significantly in-
homogeneous case, may be delayed or even arrested whefience the dynamics of beams with arbitrary initial condi-
narrow attractive inhomogeneity is introduced into the systions (see, e.g.[25]). In particular, it is our goal to investi-
tem. As the present model due to the relaticth=2, has a gate whether the collapse of beams wNk>N. can be
close relation to the optical application of the two- postponed or even arrested. To undertake this investigation
dimensional2D) cubic NLSE[10,13 we will in the follow-  we will mainly focus on the situation, where the linear part
ing refer to the excitations as beams. of the operator in Eq(1), —&ﬁ—V(x), supports a bound

The paper is organized as follows. In Sec. Il we introducestate. In this case stable stationary solutions WithN, ex-
the model and describe its basic properties in the homogést [23] and it is thus relevant to ask if these bound states act
neous case before discussing the numerical results obtained attractors for certain classes of initial conditions.
when an inhomogeneity is included in the model. From the \When performing the numerical experiments we use a
outcome of the numerical calculations it will become clearsmoothed version of the rectangular potential well,
that the presence of a narrow attractive inhomogeneity has
the potential of postponing or even arresting the formation of V(x)=e[6(x+a)—6(x—a)]. (7)

a singularity for beams which would collapse in the homo- . - .
geneous case. In Sec. Ill we address the problem analytfN€re#(x) is the Heaviside step function ardand 2 are

cally. Using a certain coordinate transformation enables us tH'€ height and width of the potential, respectively. As initial
calculate energy radiation from the beam using methods dé:onditions we use a slightly supercriticl$-N¢) perturba-
veloped to characterize the tunneling of probability in lineartion Of the amplitude function(x,A) given by
guantum-mechanical systems. Finally, Sec. IV summarizes _ _
our results. #(x,0)="V(0.99%x~Xo), 1), ()
whereX, determines the initial distance between the centers
Il. MODEL AND EQUATIONS OF MOTION of the beam and potential. In the first seri@gs. 1-6 of
experiments the potential height and width are fixedeat
=0.7 anda=1, while X, is varied in order to control the
initial strength of beam/potential interaction. As is seen, the
Lt ot | |4+ V() =0, 2 beam collapses in two different cases. When the center of the
Vet ot [TV OOy @ beam initially is localized sufficiently close to=0 the ef-

wherex is a transverse coordinate andheasures the propa- fect of the potential is to enhance the speed of collapse com-
gation length. In the homogeneous césx)=0], Eq.(2)  pared to the scenario wit(x) = 0. This kind of dynamics is

To model the propagation of a (11)-dimensional beam,
¥(X,2), we use the equation

has the stationary solution illustrated in Fig. 1. On the other hand, a large distance be-
_ tween the beam center amxa=0 results in negligible cou-
P(x,2)=P(x,A)e' 1?2 (3) pling between beam and potential. Consequently, the beam

) o ) collapses in approximately the same way as in the homoge-
where the real shape functioh(x,A) satisfies the equation neous system corresponding to E®&). In Fig. 6, X,=5
corresponds to this scenario, while Fig. X,E 3.468 85)

d?W¥(x,A ; ; ;
(x,A) WS, A) =W (x,A) =0, 4) illustrates how the presence of the potential can increase the

dx2 propagation length needed for a singularity to develop in the

intensity profile. In between the two extremes where collapse

which has the solution occurs, there exists a range of values for the initial position
of the beam center, which leads to arrest of the collapse.

W(x,A)=(3A)"sect?2 VA x) (5  (See, Figs. 2—4.0ne remarkable feature of this process is

. ) that the beam radiation is significantly enhanced by the in-
with the mass given by homogeneity[26] and as is seen the radiation develops
mainly at the side of the beam that is opposite the well. To

N(A)Efx | (X z)|2dx=&. 6) interpret the outcome of the numerical experiments in a

—w ’ 2 quantitative way it is useful to have measures for the width

and center of the beam in the case when the beam in the
According to the Vakhitov-Kolokolov criterion, the solu- large propagates as a single localized entity. To meet this end
tions, Eq.(3), are stable and unstable #dN/dA>0 and we introduce the quantities
dN/dA <0, respectively. AN(A) from Eqg. (6) is seen not
to depend om\, application of the stability criterion implies R= f” | |8dx 9)
marginal stability of the stationary solutions. Thus, if a sta- —e '
tionary solution is perturbed in such a way thdt>N,
=/37/2, a singularity in the intensity profilpy|? appears and
within finite propagation length. In this case the beam is said .
to have undergone a collapse. On the other hand, a perturbed X = i x| | 2dx (10)
stationary solution witiN<<N. cannot remain localized and NJ = '
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FIG. 1. The half widtha of the potential and the heightof the FIG. 2. Same as Fig. 1 wite=0.7,a=1, andX,=0.5.

potential are given by 1.0 and 0.7, respectively. The following ini-

_ iy _ ] B which initially are accompanied by radiation. However, the
tal Cond't'(.)n. .for v is used'\P(X‘o)._ \/\/§seclﬁ1.98(x—xo)], emission of radiation decreases as a function of propagation
wher_e the initial value of the _centromo equgls 0.25. In(a) the length and is az=60 no longer visible in Fig. @). In Fig.
amplitude of¥(x,2), |¥(x,z)| is shown for different values of 3(a), whereX,—=2, the beam is seen to become very quickl
In (b) and (c) the centroid,X, and the inverse width squared, .’ 0 ’ ) . . y.q y
[||5dx, respectively, are plotted versas distorted by the potential, thus making the interpretatioX of

' ' andR, as beam center and inverse width squared, valid only
which in the self-similar approach coincides with the inverseinitially. Having seen the outcome of the numerical calcula-
width squared and the position of the maximum intensity tions, it is useful to compare th&, dependence of the initial
respectively. For a collapsing bearR, diverges and can, centroid acceleration,(0), and thecollapse properties of
therefore, be applied to the outcome of the numerical calcuthe beam. The centroid acceleration vanisheX@t 0 and
shown in Fig. 2a) whereX,=0.5, the width decreases until o the other hand, the beam has been observed to collapse
a C%rt‘ji'n prodpag_atlon gangth after Wh_||_chh the belzlam IS Sepf]fv'\/hen X, is either sufficiently small or large. From this ob-
rated into radiation and a core part. The overall motion Ofge\aiion we expect the centroid acceleration to facilitate ra-

this core part is given by the centroid oscillations in Figs. . .. -
2(b) and 40), diation thus enabling the beam mass to drop beldw,
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FIG. 3. Same as Fig. 1 wite=0.7, a=1, andXy=2.0.

FIG. 4. Same as Fig. 1 wite=0.7, a=1, andX,=3.468 75.
where collapse no longer is possible. This point is subject to
rigorous mathematical treatment in the next section. away from the well.(i) The inhomogeneity facilitates the

Another series of experiments, which we performed, wasgiation of the beam. The radiation occurs mainly in the

to launch a beam into a system with a negative potentiagdirection away from the weliii) There is a correlation be-
barrier (¢<0). The results of these experiments are shown iyeen the centroid motion and the width of the beam.
Figs. 7a), 7(b), and 7c) and Figs. &), 8(b) and &c). Here
the beam either collapses or disperses depending on its initial
position with respect to the barrier. A stabilizing effect of the . ANALYTICAL RESULTS

potential has not been observed in this case. In order to give some analytical insight into this problem

These numerical experiments demonstrate three remarlge jntroduce the transformation of the noninertial frame of
able features of the dynamics of supercritical beams in 'nhofeference in which the centroid of the beam

mogeneous systemsi) The collapse of the beam can be

delayed and even arrested if the initial distance between the

centers of the beam and potential well is in a certain interval. X(z)= lfx X| c//(x,z)|2dx (11)
The beam collapses when it is either too close or too far NJ-w
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FIG. 5. Same as Fig. 1 witk=0.7, a=1, andX,=3.468 85.

is at rest. Thus,

¢//(x,z)—Z(;,z)exp(ik(z)7+ifzk2(z’)dz’>, (12)
0

N

I R s
X:NLJI//(X,Z)F ax

FIG. 6. Same as Fig. 1 wite=0.7, a=1, andXy=5.0.

dV(x)

(14

. The fourth term on the right hand side of EG3) describes
wherex=x—X(2z) is the transversal coordinate in the new the influence of the linear potential in the new frame of ref-
frame of reference anki(z)=3X is the momentum canoni- €rence while the fifth term represents the inertial force work.
cally conjugated to the centroid coordingtiot denotes the It is worth noticing that due to Eq$13) and(14) the func-
derivatived/dz). In the new frame of reference, E®) takes  tion ¢(x,z) should satisfy the following compatibility con-
the form dition:

i Yot Yot [ Y+ VX X(2)g— 3 Xxp=0. (13

f x| (x,z)|2dx=0. (15)

The centroid coordinat¥(z) satisfies the equation
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Using the lens transformation first used in the homoge- F|G. 8. Same as Fig. 1 wite=—0.7, a=1, andX,=0.75.
neous case ih27]

we obtain from Eq(13) the equation for the shape function

2 d(&,0) in the form

S 1 ) ) L x
vixz)= \/m(b(g’g)eXp(lg+ll_(z)4>’ (18 | ® 4+ Dt | DD — D L2W(E D=0,  (18)
where
whereL(z) is the beam width, and new independent vari-
ables are defined as W(&)=—1% 2 B(z)/L2+ eF(£,L,X) (19
— and
= L r— i (17
¢ L(2)’ ¢ L2(z)’ eF(£,L,X)=3XLE-V(EL+X) (20)
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with WhenB=0 ande=0, Eq.(18) has the stationary solution
[see Eqgs(4) and(5)]
LL3=-B(2). (21)
T=V(¢1)=3YsecH?2¢). (25)
The potentialW(&) represents the influence of inertial

forces (the centrifugal potential-%3(z)/L?¢? and the po- For smallB and e one can expect that the functiah(¢,)
tential X L& of accelerated centroid motipand of the po- has a very small derivativé, and thus Eq(18) has a qua-
tential [ — V(£L+X)], not found in the homogeneous case, Sistationary solutiorb close to solutior(25) in the range
on the beam dynamics . Wher{z) is known Eqs(14), (18),

and (19) describe the beam evolution. |fl<éo<§j, (i=r.D),
In the homogeneous ca$®/(x)=0] when Eq.(2) de-
scribes a critical collapse, the functigt{z) that in this case ,Bgé< 1,|)"(L3§0|<1. (26)
is related to the excess mass above the critical ni\ss
through First we want to calculate the core madgin the presence
of inertia forces and inhomogeneity. We are looking for a
~ N=N¢ _1f°° P REL quasistationary solution of Eqél8) and(19) in the form
B= , M=— x“¥e(x,1)dx= .
M 4)_. 128 .
(22) O =(V+BS+eT)e N, 27

From Refs[28-33 is known that3(z) satisfies the equation Where is the eigenfrequency shift caused by the potential
V(x). Substituting expansio(27) into Eqgs.(18) and(19), it

) 8.3 - is found that
=— Sexp — —=|. (23
M L VB £S=—1e2p, (29)
This equation can be obtained from the solvability condition [T=—FU+\P, 29

for the asymptotic expansion of the self-similar shape func-

Elgsn]_@(g’g) [28-33 or by using a multiscales approach where L= %/ 9¢%>+5¥*4—1. Equationg28) and(29) are al-

oways solvable because the zero-mode function is orthogonal
to the right-hand side of E428) due to the symmetry of the
function W (£). It is also orthogonal to the right-hand side of
Eq. (29) because the orthogonality condition

Let us consider now the beam evolution in the presence
the linear potentiaV/(x). It is assumed thati) inhomogene-
ity is weak: the linear part of the potentisl(x) is of small
intensity (max/V(x)|}=e<1) and narrow[V(x)~0 when
|x|<a]. We are interested in the case of narrow inhomoge- .
neity because if the inhomogeneity is very broad compared f
to the width of the beam, the shape of the inhomogeneity can %
be Taylor expanded around the center of the beam yielding a
parabolic potential in the NLSE. This case was investigateanay be rewritten in the form
in Refs.[6,24]. However, if the width of the inhomogeneity
is of the same order as the beam width, the Taylor expansion . d
is no longer valid and one should then, as we did, use a XNe= Zo V(LX) =0, (31)
potential that is nonparaboligii) Supercriticality is small:
the mass of the beam only slightly differs from the critical
value, i.e.,N—N;/N.<1 .

Let us represent the wave functighfx,z) in the noniner-

1. 1
SXE+ TV(ELHX) | P dé=0 (30)

where

tial frame of reference as WL, X)= Jloo‘l’z(f)V(ﬂ-JrX)df
__ s if —&§L(2)<x=<¢L x —
l//(x,z)z l// | _gl (Z) X f_ (Z) EJ' V(X)\P2<¥) dx (32)
Yo if x>& L(z) or x<—§ L(2), —o

where i is the inner core function and, is its outer part. is an effective potential caused by the presence of the linear
& (£,>1) andé (¢>1) are constants, which characterize potential V(x). Comparing Eqs(14) and solvability condi-

the size of the beam. It is worth noting that in the presence ofion (31), they are seen to coincide [iy|=(1/JL)¥(£L
inhomogeneity the beam may be asymmetric and therefore irt X) in the equation for centroid motiofi4).

principle &, # £, . The mass of the inner core of the beém Using the relationL(dW (&,A)/dA)y-1="V where the
what follows we will call this part of the beam mass the corefunction W (£,A) is given by Eq.(5), one obtains that
mas$ is
o 1(= , [dV(EAN) 1
&L — 5 & ) f \I’Sd§=—2f &v TN d§=§M,
Ns:f lg(x,2)] dX=f |Dg(£,0)[7d¢. (29) - - A=1
-§ L@ —§ (33
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(a) the theory of the Stark effect in atoni86] where even a
weak electric field is sufficient to create a potential barrier
and makes it possible for electrons to escape from the
nucleus.

It is worth noting that the accelerated center of motion
potential ¢ XL3¢) significantly modifies the potential profile
-} U(¢) making the profile asymmetric and facilitating the es-
-1.5 cape to the side opposite the position of the inhomogeneity.
From Eg.(18) we obtain that the radiation rate for the

) 112
core mass is given by
10 5 0 5 10
1 d
() atts=
\ J=J,+J,
) 1
—_ (i *
o N I=m R ooy,
-1 1
] J'EF(@* Dyt c.C)le= g, 37
10 0 };o 20 30

where J, (J)) is the current densityradiation fluy to the

FIG. 9. In(a) and(b) the potential functiot (£) is depicted for
B>0 andB<0, respectively.

right (left) of the beam. The derivation of the expression for
the current density is rather cumbersome and is given in the
Appendix. Here we present only the final result. When the

o o IV(EA) centrifugal coefficienp is positive the current densities may
f ‘I’Td§=f (A‘I’—F‘P)(T) dé be present as follows:
- - A=1
L3 4 :
— Ji=—+3D; =r,l),
7 (LX) (34 =1z i (] )

Substituting expansiof27) into Eqg. (24) and taking into
account Eqs(34) and (32), one obtains the expression for
the core mass,

2 [
Drzexp{ - —(§(1+ k?)+ k+ (1+ k?)arctari «)

VB

|

Ng= f’ (V+BS+ eT)zdfzfx (W2+2B¥ S+2eV T)
—§ o

D p{ 2(”<1+ 2)— k—(1+ kP arctar x)
=exp ——| = K°)— K— Kk°)arctar k
\/E 2
L3 o (38
=Ne+MpB+ = —UL.X). (35
where the notation

This equation gives the link between the core midgs its -
width L, and centroidX. _ XL
We shall obtain an equation fa¥g by considering the 28
radiation rate for the core mass. For this purpose it is conve-
nient to rewrite Eqs(18) and(19) as the Schrdinger equa- is used. HereD, (D)) is the transmission coefficient for the
tion right (left) potential barrier in the potential profild(¢).
In accordance with Eq$25) and (32) for the inhomoge-
neity potentialV(x) given by Eq.(7) the effective potential
V(L,X) has the form

(39

K

U(&)=1-3BE+3XL3E-L2V(EL+X)—| D% (36)

The potential profileJ (¢) for the case when the inhomoge- V(L X)=€y3
neity potentialV(x) is a rectangular potential welsee Eq.

(7)]is shown in Fig. 9. The potential energy of inertial forces at+X

(3B&? and 1XL3¢) makes the functiorlJ(£) unbounded —arctan ex{)—ZT]).

from below and as a result the motion of a particle in this

potential becomes infinite. This situation is closely related tol'he motion for the centroiX(z) is governed by the equation

a—X
arctan ex ZT

(40)
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FIG. 10. Plot of the flux to the left foB>0. In the figure it is
seen that the pulse mainly radiates away from the inhomogenity.
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>
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Substituting the centroid acceleratigiX in form (41) into
Eqg. (38), one obtains the current densifly(X) [note that
J1(X)=J,(—X)], which for a givenB>0 is presented in
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FIG. 12. Same as Fig. 11 wit§(0)=0.5.

Fig. 10. As is seen, the current density is a highly asymmet-
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FIG. 11. The half widtha of the potential and the heightof the
potential are given by 1.0 and 0.2, respectively. The following ini-
tial condition for X, X, L, L, andv are used:X(0)=0.1, X(0)
=0, L(0)=1, L(0)=0, andv(0)=0.05. In the upper figure the
inverse width squaredR= 1/L?, is shown as a function df In the
middle figure the centroiX is depicted versus. Finally, the lower
figure shows the dependance of.

ric function of X. The beam radiates mainly away from the
inhomogeneity. This result is in agreement with the results of
numerical simulations shown in Figs(al—6(a).

When the centrifugal coefficien® is negative the beam
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FIG. 13. Same as Fig. 11 witk(0)=0.9.
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FIG. 14. Same as Fig. 11 with(0)=1.0.
FIG. 16. Same as Fig. 11 wit§(0)=3.0.
radiates only to one side, to the side opposite the inhomoge-
neity [compare the shape of the effective potentiglt) in

4
Figs. 9a) and 9b)]. The current density in this case has the J= e V3D,
form

1 2
|K|+§(1+K )

y 1
D= g(X?L°+4p) ex;{ —2 \/IBI

0.8 i
0.6 k|+1
X J—
0.4 In PE , (42

0.2

° -k
/I

0 2 4 6 8 101214
where theé function in front of the exponential function
shows that for3<<0 the radiation may take place only in the
presence of relatively strong inhomogeneities.

From Eqgs(37), (38), and(42) we obtain that the radiation
rate for the core mass is determined by equation

| I |
WN=O =N
/>< N

8 — 1+ k2
0 2 4 6 8 1012 14 — _
J= Lz\/3<9(,8)exp{ - ]

VB

L L |
000000 ©
oMhwv=O=

xcosk{ Zi[K+(1+ Kz)arctarqx)]]

B

+6(— B) O(X?LS+4pB)

) 1
0z 4680 ><exp{—2\/|ﬂ| H)

FIG. 15. Same as Fig. 11 witk(0)=2.0. (43

[r|+1

<=1

|Ky+ﬁ1+xﬁm(

—_
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This expression may be reduced to a more simple form iron the initial distance between the beam and the center of the

limiting cases of weak and strong inhomogeneities: inhomogeneity potential. Collapse arresting and stabilizing
of the excitation takes place fo¢(0)=0.75 andX(0)=0.9,
- while for X(0)=2 the excitation disperses. These results are
exp( - _) it BIL3>|X| in qualitative agreement with numerical studies presented in
8 \/,E the previous section.

J= Fﬁx

4 2 ot is vyo_rt_h noti_ng that tunngling effect_s here are _essential:
P( - _) it |Bl/L3<|X|. in the vicinity of inhomogeneity the radiation rate increases
3 |XL?| and, therefore, the mass of the beam varies witN =N,

+Myv). The centroid motion and variations of the width of

Thus in the case of weak inhomogeneity the radiation rate i§1€ Peam and its mass are obviously correlated.
mainly determined by the centrifugal inertia forf8(z)]
while in the case of relatively strong inhomogeneity it is due IV. SUMMARY

to accelerated centroid motios X).

Combining Egs.(21), (31), (35), and (37), one obtains
that the set of ordinary differential equations, which describ
the evolution of the parameters of the beam in the presen
of inhomogeneity, has the form

In summary we have shown in this paper that the presence
of inhomogeneity permits the stabilization of otherwise col-
gapsing excitations. We have shown this via analytical analy-
&s and via numerical simulations. Analyzing the beam dy-
namics under the influence of attractive inhomogeneity one
can conclude that the collapse of the beam can be delayed
. \Y 1 9 and even arrested if the initial distance between the beam and
L=- e HETVIETRAGISE (449 the well is in a certain interval. The inhomogeneity facilitates

the radiation of the beam. The mass of the beam decreases
and becomes less than critical. In this way the singular be-

. havior of the beam is prevented. Analytical and numerical

V= MJ(V*L'X)’ (45 anisotropy of the radiation rate for the beam in the presence
of inhomogeneity was observed. The radiation occurs mainly
into the direction opposite the well position. We have also
shown that there is a correlation between the centroid motion
and the width of the beam and its mass.

In view of the similarity between the dynamics of the
two-dimensional cubic nonlinear Scliiager equation and
'the one-dimensional quintic nonlinear Sotlirmyer equation
[10], our results indicate that two-dimensional supercritical
2M P -1, beams propagating in nonlinear waveguides can be con-
K= N—L3 2Mv—L3(9—LV(L,X) §—XV(L,X) (47)  trolled by inhomogeneities effects, at least when the super-

¢ criticality is not very big(the relative difference between the
beam power and the critical power is smallhe same sce-
nario could be important in the modeling of Bose-Einstein
condensation in trapped atomic gases.

. 1 9

1
N LX), (46)

wherev=Ng—N./M is the excess core mass above critical
J(v,L,X) is current density43) in which the substitution

is used, and/(L,X) is the effective potential given by Eg.
(32). It is worth noticing that in the adiabatic approximation
whenv=0, the set of Eqs(44)—(46) coincides with equa-

tions, which were obtained in Ref37] using a collective

coordinate approach. As is seen from Ep) the magnitude ACKNOWLEDGMENTS
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brings down the excess core masdelow zero before a
singularity has been formed.

We solve numerically the set of Eq&l4) for the rectan-
gular well inhomogeneity potentiaf(x) in the form given
by Eq. (7). The parameters used are

L(0)=1, L(0)=0, X(0)=0,
X(0)=0.1,0.5,0.9,1, 2, 3. (48)

APPENDIX

In this appendix we derive an equation for the radiation
The results of the simulations are presented in Figs. 11-16ate for the core mass. In this derivation we will use the
As is seen for a given degree of super criticalityand procedure presented in the review pafi&t] (this approach
strength of the inhomogeneitythe beam evolution depends was proposed by Malkin if38]).
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From Eq.(18) we obtain that the radiation rate for the 1<g<é0, (A6)
beam mass is given by
we obtain from Eq(A1)

—Ng=-1, O(£)=3Ye ¢, (A7)

When > & we can neglect the nonlinear term and the po-
J=3.+] tential V in Eq. (A1) and in the WKB approximatiorisee,
roh e.g.,[36]) get

1 C (@ dii”
J=- 5 DetC.C)l =, (&)= @eXp(IL?p(é)df—lz>, (A8)

where
1
JI:F(I(I)* (D§+C.C.)|§:_§|, (Al)

p(&)=\U= JZ—E\/@—&?)(&—%?) (A9)

whereJ, (J)) is the current density to the rigltleft) of the g the quasiclassical momentum a@d is a constant.
beam. As was mentioned above in the case of supercriticality Using the connection formula of the WKB approd@s]

(small B) and weak inhomogeneity, one can neglect theWe obtain from Eq(A9) that for £< £° the functiond(¢)
small termi®,. Then, Eq.(18) takes the form can be represented in the form '

c, e _
D(E=—i e )d . (A10)
O="Tro Xp(”s?p(g ﬂ)

In the interval ké<¢?,

U=1—%B§2+§L3§—L2V(§L+X)—|<I>|4. (A2)

Let us consider separately the casesgopositive and ; :
negative. When ‘ |op@ dﬁ=s— [‘p@dE=s-c @
& 0

0<B~|XL3%<1, (A3)

where

the potential has four turning pointssee Fig. 9 two inner
(core turning points

_f§?| _|d_—1+K2 z_l_ K + arct
S= | Pl dE== | 5+ varctan) |

0< &=0(D), B
(A12)
0> &=0(1), (A4)  comparing Eqs(A7) and (A12) we see that inner and outer
. . parts of the functionb (&) can be matched if
and two outer turning points
) C,=i3"2exg—S,). (A13)
o_ < ML .2
&= \/IE(KJF 14«5, It is seen from Eq(A8) that for £&> £ the function® () has
the asymptotic form
2 14
£=—(k—1+«?), (A5) G4\t ﬁ . T
JB @(5)—\/5 3 exp i I3 7] (A14)

. _ <, 3 . . .
where the ”°“”¥“°“‘—XL /2/B is used. It 1S worth noting Therefore, introducing EqsA13) and (A14) into Eq. (A1),
that the potential/(¢L +X) does not contribute essentially \ o optain that the current density to the right of the beam is
to the position of the outer turning points due to its na”Ongven by

character. As it follows from Eq(A3) an inequality,| &7
>1(j=r,l), takes place. 4
To calculate current densitig&1) we will set &, (§)) to J=—\3Dy, (A15)
be just past the outer turning poiét (&) to the right(to the L
left). It can be done because in the classically inaccessiblﬁlhere
regions &<E<E (£/<é<E), the function (&) de-
creases exponentially and such a shift will result in an expo- D,=exp—2S,) (A16)
nentially small contribution to the core malss.
Let us consider first the current density to the right of theis the transmission coefficient for the classically inaccessible
beamJ,. When region[&,&7] . In the same way one can obtain that the
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current density to the left of the beam has the form

4
Jl:F\EDI’

D,=exp —2S), (A17)

with D, being the transmission coefficient for the classically

inaccessible regiop¢r , £7]. Here,

2

_J’O  dF= 1+«
S= gI(,p(f) f—T’B

w

K
——————arctanx) |.
2 14,2 : ))
(A18)

If we substitute Eqs(A15) and(A17) into Eqg.(Al), we get
that the radiation rate for the core mass is

dNg 8 1+ k2
o= o

xcosk{ Zi[;c+(1+ K2)arctam:<)]] )

VB

(A19)

Note that in the case of homogeneous quintic model when
X=0 radiation rate(A19) coincides with the rate that was

calculated in Ref[35].
When 8<0 outer turning pointgA5) exist when

X?L6+48>0. (A20)

But in contrast to the case of positignow there is only a
one-directional tunneling, to the side opposite the position of
inhomogeneity(see Fig. 9. Neglecting the back process of

mass trapping due to waves that are reflected from the distant J=
turning point and using the same method as was described

above, we obtain for
—X?L8<4pB<0 (A21)

that current density has the form
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4
J= P\ED

D=exp —29),
I S
S—fo p(¢é) dé= 3]

where £°=min{|£],|&7}.
Combining Egs.(A19) and (A22) we obtain that the ra-
diation rate of the core mass is

N |k+1
||+ 3(1+ K2)|n(—|K|_1”,
(A22)

dNg
dz

=—J,

2

8 1+«
J—F\E( 0(,8)exp[ —7 N ]

XCos)—{ 2i[;<+(1+ Kz)arctamk)]]

VB

+60(— B)O(X2L8+4pB)

y p{_z\/i
X 18]

N |k|+1
|K|+§(1+ K2)|n(|’(|—_l)”

(A23)

whered(x) is the Heaviside step function. Expressi@3)
may be significantly simplified for limiting cases:

, [ed-7

= 3x
o p( ? 2 it 2|8|/L3<|X|
exp — 5 =5 | < .

3 XL

if 2B/L%>|X|

Thus, the radiation rate is controlled by two inertia forces: by

the centrifugal forcgs/L® and by the inertia force caused by
the accelerated center-of-mass motkn
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