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Collapse arresting in an inhomogeneous quintic nonlinear Schro¨dinger model

Yu. B. Gaididei,* J. Schjo”dt-Eriksen, and P. L. Christiansen
Department of Mathematical Modelling, The Technical University of Denmark, DK-2800 Lyngby, Denmark
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Collapse of (111)-dimensional beams in the inhomogeneous one-dimensional quintic nonlinear Schro¨-
dinger equation is analyzed both numerically and analytically. It is shown that in the vicinity of a narrow
attractive inhomogeneity, the collapse of beams in which the homogeneous medium would blow up may be
delayed and even arrested.@S1063-651X~99!03610-7#

PACS number~s!: 42.65.Jx, 03.65.Ge
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I. INTRODUCTION

The spatial contraction of wave packets and the forma
of a singularity in finite time—the wave collapse or, mo
generally, the blowup of the wave packet—is one of t
basic phenomena in nonlinear physics of wave systems.
amples are the self-focusing of light@1–3# in optics, the col-
lapse of Langmuir waves in plasma@4#, the self-focusing of
gravity-capillary surface waves@5#, the blowup of nonlinear
electronic excitations in molecular systems@6#, and the col-
lapse in a Bose gas with negative scattering length@7,8#.
Wave collapse is an efficient process of energy and/or m
localization as well as energy dissipation~see, e.g., review
papers@9–11#!.

The theory of self-focusing wave packets in optic
plasma, and solid-state physics is based on the analysis o
nonlinear Schro¨dinger equation~in the theory of the Bose
Einstein condensation this equation is called the Gro
Pitaevskii equation@12#!

i ]zc1¹2c1ucu2sc1V~rW !c50, ~1!

wherec(rW,z) is the complex amplitude of the quasimon
chromatic wave train~the condensate wave function! , ¹2

5( i 51
d ]xi

2 is the d-dimensional Laplace operator,z is the

propagation variable~the time variable in Bose-Einstei
theory! and rW5(x1 , . . . ,xd) is the spatial coordinate. Th
third term in Eq.~1! characterizes the nonlinear properties
the system: light intensity-dependent refractive index in
tics, effective self-interaction of Langmuir waves in plasm
or the interaction between Bose particles, etc. Finally
fourth term in Eq.~1! is either an inherent space-depende
refractive index of the material or an external~confining!
potential. Physical systems, which share the same valu
the factorsd, possess many similar features such as stab
properties of the stationary solutions. It was found@10,13#
that in homogeneous systems@V(rW)50# the stationary solu-
tions of Eq.~1! are stable whensd,2 and unstable when
sd.2 with the casesd52 being marginal. In the latte
case the excitation either blows up or disperses dependin
whether a certain characteristic measure of the excitatio
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above or below a threshold value, respectively. This meas
is, e.g., the beam power in optics, the number of atoms
Bose-Einstein condensates, and the number of excitation
plasma physics.

The dynamics of self-focusing waves in inhomogeneo
nonlinear systems has become a topic of extensive stu
due to the rich dynamical properties induced by the interp
between nonlinearity, dispersion, and inhomogeneity. T
effects of periodic spatial modulation of the refractive ind

@V(rW)5v cos(kx)# in the spatiotemporal evolution of pulse
in nonlinear waveguides were recently investigated usin
variational approach and numerical simulations@14#, while
exact sufficient criteria for blowup were obtained in@15,16#.

Feit and Fleck@17# have first pointed out that if non
paraxiality of the beam propagation is taken into accou
blowup does not occur. This result was further supported
using a collective coordinate approach@18#, by adding an
additional term that models the variation of the propagat
constant along the direction of propagation@19# and by ap-
plying an asymptotic analysis@20,21#.

The effect of disorder on the spatiotemporal evolution
pulses in nonlinear waveguides were studied in Ref.@22#
where it was shown that random fluctuations delay collap

Also, criteria for existence and stability of stationary s
lutions in inhomogeneous systems have attracted a lo
attention. In@29# modes of an inhomogeneous structure we
first found, while a generel criterion for the existence
stable stationary solutions was derived in@23#.

In physical systems, where an excitation is located in
vicinity of a smooth bell-shaped inhomogeneity with a wid
much larger than the width of the excitation, one may mo
the inhomogeneity as a parabolic potential. The possibility
controlling the self-focusing of nonlinear excitations in m
lecular structures with parabolic-type inhomogeneities w
investigated in Ref.@6#. The acceleration of the collapse o
light beams in weakly nonlinear dispersive media with eith
a constant or weakly oscillating parabolic density profile w
investigated in Ref.@24#. Collapse and Bose-Einstein con
densation in trapped Bose gas with negative scattering le
in the presence of the parabolic confining potential,V(rW)
;r 2, were studied in Refs.@7,8#. However, the parabolic
model breaks down when the widths of the inhomogene
and the excitation are of comparable size. It is the idea of
paper to investigate the dynamical evolution of excitations
the presence of such narrow inhomogeneities.

s-
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To meet this end we use the one-dimensional quintic n
linear Schro¨dinger equation~NLSE! as our model. A key
element in this investigation is to show how the collapse
excitations, which are characterized as supercritical in
homogeneous case, may be delayed or even arrested w
narrow attractive inhomogeneity is introduced into the s
tem. As the present model due to the relationsd52, has a
close relation to the optical application of the tw
dimensional~2D! cubic NLSE@10,13# we will in the follow-
ing refer to the excitations as beams.

The paper is organized as follows. In Sec. II we introdu
the model and describe its basic properties in the homo
neous case before discussing the numerical results obta
when an inhomogeneity is included in the model. From
outcome of the numerical calculations it will become cle
that the presence of a narrow attractive inhomogeneity
the potential of postponing or even arresting the formation
a singularity for beams which would collapse in the hom
geneous case. In Sec. III we address the problem ana
cally. Using a certain coordinate transformation enables u
calculate energy radiation from the beam using methods
veloped to characterize the tunneling of probability in line
quantum-mechanical systems. Finally, Sec. IV summar
our results.

II. MODEL AND EQUATIONS OF MOTION

To model the propagation of a (111)-dimensional beam
c(x,z), we use the equation

icz1cxx1ucu4c1V~x!c50, ~2!

wherex is a transverse coordinate andz measures the propa
gation length. In the homogeneous case@V(x)50#, Eq. ~2!
has the stationary solution

c~x,z!5C~x,L! ei L z, ~3!

where the real shape functionC(x,L) satisfies the equation

d2C~x,L!

dx2
1C5~x,L!2C~x,L!50, ~4!

which has the solution

C~x,L!5~3L!1/4sech1/2~2 AL x! ~5!

with the mass given by

N~L![E
2`

`

uc~x,z!u2 dx5
A3p

2
. ~6!

According to the Vakhitov-Kolokolov criterion, the solu
tions, Eq. ~3!, are stable and unstable ifdN/dL.0 and
dN/dL,0, respectively. AsN(L) from Eq. ~6! is seen not
to depend onL, application of the stability criterion implies
marginal stability of the stationary solutions. Thus, if a s
tionary solution is perturbed in such a way thatN.Nc

5A3p/2, a singularity in the intensity profileucu2 appears
within finite propagation length. In this case the beam is s
to have undergone a collapse. On the other hand, a pertu
stationary solution withN,Nc cannot remain localized an
-
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the beam ultimately disperses completely. This kind of ins
bility also characterizes stationary solutions of the homo
neous 2D NLSE.

The presence of an inhomogeneity may significantly
fluence the dynamics of beams with arbitrary initial con
tions ~see, e.g.,@25#!. In particular, it is our goal to investi-
gate whether the collapse of beams withN.Nc can be
postponed or even arrested. To undertake this investiga
we will mainly focus on the situation, where the linear pa
of the operator in Eq.~1!, 2]x

22V(x), supports a bound
state. In this case stable stationary solutions withN,Nc ex-
ist @23# and it is thus relevant to ask if these bound states
as attractors for certain classes of initial conditions.

When performing the numerical experiments we use
smoothed version of the rectangular potential well,

V~x!5e@u~x1a!2u~x2a!#. ~7!

whereu(x) is the Heaviside step function ande and 2a are
the height and width of the potential, respectively. As init
conditions we use a slightly supercritical (N.NC) perturba-
tion of the amplitude functionC(x,L) given by

c~x,0!5C„0.99~x2X0!,1…, ~8!

whereX0 determines the initial distance between the cent
of the beam and potential. In the first series~Figs. 1–6! of
experiments the potential height and width are fixed ae
50.7 anda51, while X0 is varied in order to control the
initial strength of beam/potential interaction. As is seen,
beam collapses in two different cases. When the center o
beam initially is localized sufficiently close tox50 the ef-
fect of the potential is to enhance the speed of collapse c
pared to the scenario withV(x)50. This kind of dynamics is
illustrated in Fig. 1. On the other hand, a large distance
tween the beam center andx50 results in negligible cou-
pling between beam and potential. Consequently, the b
collapses in approximately the same way as in the homo
neous system corresponding to Eq.~2!. In Fig. 6, X055
corresponds to this scenario, while Fig. 5 (X053.468 85)
illustrates how the presence of the potential can increase
propagation length needed for a singularity to develop in
intensity profile. In between the two extremes where colla
occurs, there exists a range of values for the initial posit
of the beam center, which leads to arrest of the collap
~See, Figs. 2–4.! One remarkable feature of this process
that the beam radiation is significantly enhanced by the
homogeneity@26# and as is seen the radiation develo
mainly at the side of the beam that is opposite the well.
interpret the outcome of the numerical experiments in
quantitative way it is useful to have measures for the wi
and center of the beam in the case when the beam in
large propagates as a single localized entity. To meet this
we introduce the quantities

R5E
2`

`

ucu6dx, ~9!

and

X5
1

NE2`

`

xucu2dx, ~10!
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which in the self-similar approach coincides with the inve
width squared and the position of the maximum intens
respectively. For a collapsing beam,R diverges and can
therefore, be applied to the outcome of the numerical ca
lations as a measure of self-focusing. In the experim
shown in Fig. 2~a! whereX050.5, the width decreases unt
a certain propagation length after which the beam is se
rated into radiation and a core part. The overall motion
this core part is given by the centroid oscillations in Fig
2~b! and 2~c!,

FIG. 1. The half widtha of the potential and the heighte of the
potential are given by 1.0 and 0.7, respectively. The following i

tial condition for C is used: C(x,0)5AA3sech@1.98(x2X0)#,
where the initial value of the centroidX0 equals 0.25. In~a! the
amplitude ofC(x,z), uC(x,z)u is shown for different values ofz.
In ~b! and ~c! the centroid,X, and the inverse width squared
* uCu6dx, respectively, are plotted versusz.
e
,

u-
nt

a-
f
.

which initially are accompanied by radiation. However, t
emission of radiation decreases as a function of propaga
length and is atz560 no longer visible in Fig. 2~a!. In Fig.
3~a!, whereX052, the beam is seen to become very quick
distorted by the potential, thus making the interpretation oX
andR, as beam center and inverse width squared, valid o
initially. Having seen the outcome of the numerical calcu
tions, it is useful to compare theX0 dependence of the initia
centroid acceleration,Xzz(0), and thecollapse properties o
the beam. The centroid acceleration vanishes atX050 and
X0→`, while Xzz(0) in between these two limits is positive
On the other hand, the beam has been observed to coll
when X0 is either sufficiently small or large. From this ob
servation we expect the centroid acceleration to facilitate
diation thus enabling the beam mass to drop belowNC ,

-

FIG. 2. Same as Fig. 1 withe50.7, a51, andX050.5.
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where collapse no longer is possible. This point is subjec
rigorous mathematical treatment in the next section.

Another series of experiments, which we performed, w
to launch a beam into a system with a negative poten
barrier (e,0). The results of these experiments are shown
Figs. 7~a!, 7~b!, and 7~c! and Figs. 8~a!, 8~b! and 8~c!. Here
the beam either collapses or disperses depending on its in
position with respect to the barrier. A stabilizing effect of t
potential has not been observed in this case.

These numerical experiments demonstrate three rem
able features of the dynamics of supercritical beams in in
mogeneous systems:~i! The collapse of the beam can b
delayed and even arrested if the initial distance between
centers of the beam and potential well is in a certain inter
The beam collapses when it is either too close or too

FIG. 3. Same as Fig. 1 withe50.7, a51, andX052.0.
to
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away from the well.~ii ! The inhomogeneity facilitates th
radiation of the beam. The radiation occurs mainly in t
direction away from the well.~iii ! There is a correlation be
tween the centroid motion and the width of the beam.

III. ANALYTICAL RESULTS

In order to give some analytical insight into this proble
we introduce the transformation of the noninertial frame
reference in which the centroid of the beam

X~z!5
1

NE2`

`

xuc~x,z!u2dx ~11!

FIG. 4. Same as Fig. 1 withe50.7, a51, andX053.468 75.
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is at rest. Thus,

c~x,z!5c̄~ x̄,z!expS ik~z!x̄1 i E
0

z

k2~z8!dz8D , ~12!

where x̄5x2X(z) is the transversal coordinate in the ne
frame of reference andk(z)5 1

2 Ẋ is the momentum canoni
cally conjugated to the centroid coordinate~dot denotes the
derivatived/dz). In the new frame of reference, Eq.~2! takes
the form

i c̄z1c̄ x̄x̄1uc̄u4c̄1V„x̄1X~z!…c̄2 1
2 Ẍ x̄c̄50. ~13!

The centroid coordinateX(z) satisfies the equation

FIG. 5. Same as Fig. 1 withe50.7, a51, andX053.468 85.
1
2 Ẍ5

1

NE2`

`

uc~x,z!u2
dV~x!

dx
dx. ~14!

The fourth term on the right hand side of Eq.~13! describes
the influence of the linear potential in the new frame of r
erence while the fifth term represents the inertial force wo
It is worth noticing that due to Eqs.~13! and ~14! the func-
tion c̄(x,z) should satisfy the following compatibility con
dition:

E
2`

`

xuc̄~x,z!u2dx50. ~15!

FIG. 6. Same as Fig. 1 withe50.7, a51, andX055.0.
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Using the lens transformation first used in the homo
neous case in@27#

c̄~ x̄,z!5
1

AL~z!
F~j,z!expS i z1 i

L̇

L~z!

x2

4
D , ~16!

whereL(z) is the beam width, and new independent va
ables are defined as

j5
x̄

L~z!
, ż5

1

L2~z!
, ~17!

FIG. 7. Same as Fig. 1 withe520.7, a51, andX052.0.
-

-

we obtain from Eq.~13! the equation for the shape functio
F(j,z) in the form

i Fz1Fjj1uFu4F2F2L2W~j!F50, ~18!

where

W~j!52 1
4 j2 b~z!/L21eF~j,L,X! ~19!

and

eF~j,L,X!5 1
2 Ẍ Lj2V~jL1X! ~20!

FIG. 8. Same as Fig. 1 withe520.7, a51, andX050.75.



al

e

ion
nc
h

e

ge
re
ca
g
te
y
si
e

a

ze
e
e

re

a

tial

onal

of

ear

PRE 60 4883COLLAPSE ARRESTING IN AN INHOMOGENEOUS . . .
with

L̈ L352b~z!. ~21!

The potentialW(j) represents the influence of inerti
forces ~the centrifugal potential2 1

4 b(z)/L2j2 and the po-
tential 1

2 Ẍ Lj of accelerated centroid motion! and of the po-
tential @2V(jL1X)#, not found in the homogeneous cas
on the beam dynamics . WhenL(z) is known Eqs.~14!, ~18!,
and ~19! describe the beam evolution.

In the homogeneous case@V(x)50# when Eq. ~2! de-
scribes a critical collapse, the functionb(z) that in this case
is related to the excess mass above the critical massNc
through

b5
N2Nc

M
, M5

1

4E2`

`

x2C2~x,1!dx5
A3p3

128
.

~22!

From Refs.@28–35# is known thatb(z) satisfies the equation

ḃ52
8A3

M L2
expS 2

p

Ab
D . ~23!

This equation can be obtained from the solvability condit
for the asymptotic expansion of the self-similar shape fu
tion F(j,z) @28–33# or by using a multiscales approac
@35#.

Let us consider now the beam evolution in the presenc
the linear potentialV(x). It is assumed that~i! inhomogene-
ity is weak: the linear part of the potentialV(x) is of small
intensity (max$uV(x)u%5e,1) and narrow@V(x)'0 when
uxu<a#. We are interested in the case of narrow inhomo
neity because if the inhomogeneity is very broad compa
to the width of the beam, the shape of the inhomogeneity
be Taylor expanded around the center of the beam yieldin
parabolic potential in the NLSE. This case was investiga
in Refs.@6,24#. However, if the width of the inhomogeneit
is of the same order as the beam width, the Taylor expan
is no longer valid and one should then, as we did, us
potential that is nonparabolic.~ii ! Supercriticality is small:
the mass of the beam only slightly differs from the critic
value, i.e.,N2Nc /Nc!1 .

Let us represent the wave functionc̄( x̄,z) in the noniner-
tial frame of reference as

c̄~ x̄,z!5H cs if 2j l L~z!< x̄<j r L~z!

co if x̄.j r L~z! or x̄,2j l L~z!,

wherecs is the inner core function andco is its outer part.
j r (j r@1) andj l (j l@1) are constants, which characteri
the size of the beam. It is worth noting that in the presenc
inhomogeneity the beam may be asymmetric and therefor
principlej rÞj l . The mass of the inner core of the beam~in
what follows we will call this part of the beam mass the co
mass! is

Ns5E
2j l L(z)

jr L(z)

uc̄~x,z!u2 dx5E
2j l

jr
uFs~j,z!u2 dj. ~24!
,

-

of

-
d
n
a
d

on
a

l

of
in

Whenb50 ande50, Eq.~18! has the stationary solution
@see Eqs.~4! and ~5!#

C[C~j,1!531/4sech1/2~2j!. ~25!

For smallb ande one can expect that the functionF(j,z)
has a very small derivativeFz and thus Eq.~18! has a qua-
sistationary solutionFs close to solution~25! in the range

uju<j0!j j , ~ j 5r ,l !,

bj0
2!1, uẌL3j0u!1. ~26!

First we want to calculate the core massNs in the presence
of inertia forces and inhomogeneity. We are looking for
quasistationary solution of Eqs.~18! and ~19! in the form

Fs5~C1bS1eT!ei elz, ~27!

wherel is the eigenfrequency shift caused by the poten
V(x). Substituting expansion~27! into Eqs.~18! and~19!, it
is found that

LS52 1
4 j2C, ~28!

LT52FC1lC, ~29!

whereL5]2/]j215C421. Equations~28! and~29! are al-
ways solvable because the zero-mode function is orthog
to the right-hand side of Eq.~28! due to the symmetry of the
functionC(j). It is also orthogonal to the right-hand side
Eq. ~29! because the orthogonality condition

E
2`

` F1

2
Ẍ j1

1

L
V~jL1X!GCCjdj50 ~30!

may be rewritten in the form

1

2
ẌNc2

]

]X
V~L,X!50, ~31!

where

V~L,X!5E
2`

`

C2~j!V~jL1X!dj

[E
2`

`

V~x!C2S x2X

L D dx ~32!

is an effective potential caused by the presence of the lin
potentialV(x). Comparing Eqs.~14! and solvability condi-
tion ~31!, they are seen to coincide ifucu5(1/AL)C(jL
1X) in the equation for centroid motion~14!.

Using the relationL(]C(j,L)/]L)L515C where the
function C(j,L) is given by Eq.~5!, one obtains that

E
2`

`

CSdj52
1

4E2`

`

j2CS ]C~j,L!

]L D
L51

dj5
1

2
M ,

~33!
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E
2`

`

CTdj5E
2`

`

~lC2FC!S ]C~j,L!

]L D
L51

dj

5
L3

4

]

]L
V~L,X!. ~34!

Substituting expansion~27! into Eq. ~24! and taking into
account Eqs.~34! and ~32!, one obtains the expression fo
the core mass,

Ns5E
2j l

jr
~C1bS1eT!2dj.E

2`

`

~C212bC S12eC T!

5Nc1Mb1
L3

2

]

]L
V~L,X!. ~35!

This equation gives the link between the core massNs , its
width L, and centroidX.

We shall obtain an equation forNs by considering the
radiation rate for the core mass. For this purpose it is con
nient to rewrite Eqs.~18! and ~19! as the Schro¨dinger equa-
tion

iFz52Fjj1U~j!F,

U~j!512 1
4 bj21 1

2 Ẍ L3j2L2 V~jL1X!2uFu4. ~36!

The potential profileU(j) for the case when the inhomoge
neity potentialV(x) is a rectangular potential well@see Eq.
~7!# is shown in Fig. 9. The potential energy of inertial forc

( 1
4 bj2 and 1

2 ẌL3j) makes the functionU(j) unbounded
from below and as a result the motion of a particle in t
potential becomes infinite. This situation is closely related

FIG. 9. In ~a! and~b! the potential functionU(j) is depicted for
b.0 andb,0, respectively.
e-

o

the theory of the Stark effect in atoms@36# where even a
weak electric field is sufficient to create a potential barr
and makes it possible for electrons to escape from
nucleus.

It is worth noting that the accelerated center of moti

potential (12 ẌL3j) significantly modifies the potential profile
U(j) making the profile asymmetric and facilitating the e
cape to the side opposite the position of the inhomogene

From Eq. ~18! we obtain that the radiation rate for th
core mass is given by

d

dt
Ns52J,

J[Jr1Jl ,

Jr[2
1

L2
~ iF* Fj1c.c.!uj5jr

,

Jl[
1

L2
~ iF* Fj1c.c.!uj52j l

, ~37!

where Jr (Jl) is the current density~radiation flux! to the
right ~left! of the beam. The derivation of the expression f
the current densityJ is rather cumbersome and is given in th
Appendix. Here we present only the final result. When
centrifugal coefficientb is positive the current densities ma
be present as follows:

Jj5
4

L2
A3 D j ~ j 5r ,l !,

Dr5expH 2
2

Ab
S p

2
~11k2!1k1~11k2!arctan~k! D J ,

Dl5expH 2
2

Ab
S p

2
~11k2!2k2~11k2!arctan~k! D J ,

~38!

where the notation

k5
ẌL3

2 b
~39!

is used. HereDr (Dl) is the transmission coefficient for th
right ~left! potential barrier in the potential profileU(j).

In accordance with Eqs.~25! and ~32! for the inhomoge-
neity potentialV(x) given by Eq.~7! the effective potential
V(L,X) has the form

V~L,X!5eA3S arctan expH 2
a2X

L J
2arctan expH 22

a1X

L J D . ~40!

The motion for the centroidX(z) is governed by the equatio
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1

2
Ẍ5

2

p

e

L FsechS 2
X1a

L D2sechS 2
X2a

L D G . ~41!

Substituting the centroid acceleration1
2 Ẍ in form ~41! into

Eq. ~38!, one obtains the current densityJl(X) @note that
Jl(X)5Jr(2X)#, which for a givenb.0 is presented in
Fig. 10. As is seen, the current density is a highly asymm

FIG. 11. The half widtha of the potential and the heighte of the
potential are given by 1.0 and 0.2, respectively. The following i

tial condition for X, Ẋ, L, L̇, and v are used:X(0)50.1, Ẋ(0)

50, L(0)51, L̇(0)50, andv(0)50.05. In the upper figure the
inverse width squared,R51/L2, is shown as a function ofz. In the
middle figure the centroidX is depicted versusz. Finally, the lower
figure shows thez dependance ofv.

FIG. 10. Plot of the flux to the left forb.0. In the figure it is
seen that the pulse mainly radiates away from the inhomogeni
t-

ric function of X. The beam radiates mainly away from th
inhomogeneity. This result is in agreement with the results
numerical simulations shown in Figs. 1~a!–6~a!.

When the centrifugal coefficientb is negative the beam

-

FIG. 12. Same as Fig. 11 withX(0)50.5.

FIG. 13. Same as Fig. 11 withX(0)50.9.
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radiates only to one side, to the side opposite the inhomo
neity @compare the shape of the effective potentialU(j) in
Figs. 9~a! and 9~b!#. The current density in this case has t
form

FIG. 14. Same as Fig. 11 withX(0)51.0.

FIG. 15. Same as Fig. 11 withX(0)52.0.
e-

J5
4

L2
A3 D,

D5u~Ẍ2L614b! expH 22A 1

ubu F uku1
1

2
~11k2!

3 lnS uku11

uku21D G J , ~42!

where theu function in front of the exponential function
shows that forb,0 the radiation may take place only in th
presence of relatively strong inhomogeneities.

From Eqs.~37!, ~38!, and~42! we obtain that the radiation
rate for the core mass is determined by equation

J5
8

L2
A3 S u~b!expH 2p

11k2

Ab
J

3coshH 2
1

Ab
@k1~11k2!arctan~k!#J

1u~2b!u~Ẍ2L614b!

3expH 22A 1

ubuF uku1 1
2 ~11k2!lnS uku11

uku21D G J D .

~43!

FIG. 16. Same as Fig. 11 withX(0)53.0.
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This expression may be reduced to a more simple form
limiting cases of weak and strong inhomogeneities:

J5
8

L2
A335 expS 2

p

Ab
D if b/L3@uẌu

expS 2
4

3

2

uẌL3u
D if ubu/L3!uẌu.

Thus in the case of weak inhomogeneity the radiation rat
mainly determined by the centrifugal inertia force@b(z)#
while in the case of relatively strong inhomogeneity it is d

to accelerated centroid motion (1
2 Ẍ).

Combining Eqs.~21!, ~31!, ~35!, and ~37!, one obtains
that the set of ordinary differential equations, which descr
the evolution of the parameters of the beam in the prese
of inhomogeneity, has the form

L̈52
v

L3
1

1

2M

]

]L
V~L,X!, ~44!

v̇52
1

M
J~v,L,X!, ~45!

1

2
Ẍ5

1

Nc

]

]X
V~L,X!, ~46!

wherev5Ns2Nc /M is the excess core mass above critic
J(v,L,X) is current density~43! in which the substitution

k5
2M

Nc
L3S 2Mv2L3

]

]L
V~L,X! D 21 ]

]X
V~L,X! ~47!

is used, andV(L,X) is the effective potential given by Eq
~32!. It is worth noticing that in the adiabatic approximatio
when v̇50, the set of Eqs.~44!–~46! coincides with equa-
tions, which were obtained in Ref.@37# using a collective
coordinate approach. As is seen from Eq.~45! the magnitude
of the excess core massv controls the speed of self-focusing
whereas the decrease inv due to radiation in the nonadia
batic case is governed by Eq.~44!. Thus a beam collapse i
avoided in the case where a sufficiently high radiation r
brings down the excess core massv below zero before a
singularity has been formed.

We solve numerically the set of Eqs.~44! for the rectan-
gular well inhomogeneity potentialV(x) in the form given
by Eq. ~7!. The parameters used are

v~0!50.05, e50.2,

L~0!51, L̇~0!50, Ẋ~0!50,

X~0!50.1, 0.5, 0.9, 1, 2, 3. ~48!

The results of the simulations are presented in Figs. 11–
As is seen for a given degree of super criticalityv and
strength of the inhomogeneitye the beam evolution depend
in

is

e
ce

,

e

6.

on the initial distance between the beam and the center o
inhomogeneity potential. Collapse arresting and stabiliz
of the excitation takes place forX(0)50.75 andX(0)50.9,
while for X(0)52 the excitation disperses. These results
in qualitative agreement with numerical studies presente
the previous section.

It is worth noting that tunneling effects here are essent
in the vicinity of inhomogeneity the radiation rate increas
and, therefore, the mass of the beam varies withz (Ns5Nc
1Mv). The centroid motion and variations of the width
the beam and its mass are obviously correlated.

IV. SUMMARY

In summary we have shown in this paper that the prese
of inhomogeneity permits the stabilization of otherwise c
lapsing excitations. We have shown this via analytical ana
sis and via numerical simulations. Analyzing the beam d
namics under the influence of attractive inhomogeneity o
can conclude that the collapse of the beam can be dela
and even arrested if the initial distance between the beam
the well is in a certain interval. The inhomogeneity facilitat
the radiation of the beam. The mass of the beam decre
and becomes less than critical. In this way the singular
havior of the beam is prevented. Analytical and numeri
anisotropy of the radiation rate for the beam in the prese
of inhomogeneity was observed. The radiation occurs ma
into the direction opposite the well position. We have a
shown that there is a correlation between the centroid mo
and the width of the beam and its mass.

In view of the similarity between the dynamics of th
two-dimensional cubic nonlinear Schro¨dinger equation and
the one-dimensional quintic nonlinear Schro¨dinger equation
@10#, our results indicate that two-dimensional supercritic
beams propagating in nonlinear waveguides can be c
trolled by inhomogeneities effects, at least when the sup
criticality is not very big~the relative difference between th
beam power and the critical power is small!. The same sce-
nario could be important in the modeling of Bose-Einste
condensation in trapped atomic gases.
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APPENDIX

In this appendix we derive an equation for the radiati
rate for the core mass. In this derivation we will use t
procedure presented in the review paper@21# ~this approach
was proposed by Malkin in@38#!.
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From Eq. ~18! we obtain that the radiation rate for th
beam mass is given by

d

dz
Ns52J,

J5Jr1Jl ,

Jr52
1

L2
~ iF* Fj1c.c.!uj5jr

,

Jl5
1

L2
~ iF* Fj1c.c.!uj52j l

, ~A1!

whereJr (Jl) is the current density to the right~left! of the
beam. As was mentioned above in the case of supercritic
~small b) and weak inhomogeneity, one can neglect
small termiFz . Then, Eq.~18! takes the form

Fjj2UF50,

U512
1

4
bj21

Ẍ

2
L3j2L2 V~jL1X!2uFu4. ~A2!

Let us consider separately the cases ofb positive and
negative. When

0,b;uẌ L3u2!1, ~A3!

the potentialU has four turning points~see Fig. 9!: two inner
~core! turning points

0 , j r
c5O~1!,

0 . j l
c5O~1!, ~A4!

and two outer turning points

j r
o5

2

Ab
~k1A11k2!,

j l
o5

2

Ab
~k2A11k2!, ~A5!

where the notationk5ẌL3/2Ab is used. It is worth noting
that the potentialV(jL1X) does not contribute essential
to the position of the outer turning points due to its narr
character. As it follows from Eq.~A3! an inequality,uj j

ou
@1 ( j 5r ,l ), takes place.

To calculate current densities~A1! we will set j r (j l) to
be just past the outer turning pointj r

o (j l
o) to the right~to the

left!. It can be done because in the classically inaccess
regions j r

c,j,j r
o (j l

c,j,j l
o), the function F(j) de-

creases exponentially and such a shift will result in an ex
nentially small contribution to the core massNs .

Let us consider first the current density to the right of t
beamJr . When
ity
e

le

-

1!j!j r
o , ~A6!

we obtain from Eq.~A1!

F~j!.31/4e2j. ~A7!

Whenj.j r
o we can neglect the nonlinear term and the p

tential V in Eq. ~A1! and in the WKB approximation~see,
e.g.,@36#! get

F~j!.
Cr

Ap~j!
expS i E

jr
o

j

p~ j̄ ! dj̄2 i
p

4 D , ~A8!

where

p~j!5AU5
Ab

2
A~j2j r

o!~j2j l
o! ~A9!

is the quasiclassical momentum andCr is a constant.
Using the connection formula of the WKB approach@36#,

we obtain from Eq.~A9! that for j,j r
o the functionF(j)

can be represented in the form

F~j!.2 i
Cr

Aup~j!u
expS U E

jr
o

j

p~ j̄ ! dj̄U D . ~A10!

In the interval 1!j!j r
o ,

U E
jr

o

j

p~ j̄ ! dj̄U5Sr2E
0

j

p~ j̄ ! dj̄.Sr2j, ~A11!

where

Sr5E
0

jr
o

up~ j̄ !u dj̄5
11k2

Ab
S p

2
1

k

11k2
1arctan~k!D .

~A12!

Comparing Eqs.~A7! and~A12! we see that inner and oute
parts of the functionF(j) can be matched if

Cr5 i31/4A2 exp~2Sr !. ~A13!

It is seen from Eq.~A8! that forj@j r
o the functionF(j) has

the asymptotic form

F~j!.
Cr

Aj
S 4

b D 1/4

expS i
Ab

4
j22 i

p

4 D . ~A14!

Therefore, introducing Eqs.~A13! and ~A14! into Eq. ~A1!,
we obtain that the current density to the right of the beam
given by

Jr5
4

L2
A3 Dr , ~A15!

where

Dr5exp~22Sr ! ~A16!

is the transmission coefficient for the classically inaccess
region @j r

c ,j r
o# . In the same way one can obtain that t
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current density to the left of the beam has the form

Jl5
4

L2
A3 Dl ,

Dl5exp~22Sl !, ~A17!

with Dl being the transmission coefficient for the classica
inaccessible region@j l

c ,j l
o#. Here,

Sl5E
j l

o

0

p~ j̄ ! dj̄5
11k2

Ab
S p

2
2

k

11k2
2arctan~k!D .

~A18!

If we substitute Eqs.~A15! and~A17! into Eq. ~A1!, we get
that the radiation rate for the core mass is

dNs

dz
52

8

L2
A3 expS 2p

11k2

Ab
D

3coshH 2
1

Ab
@k1~11k2!arctan~k!#J .

~A19!

Note that in the case of homogeneous quintic model w
Ẍ[0 radiation rate~A19! coincides with the rate that wa
calculated in Ref.@35#.

Whenb,0 outer turning points~A5! exist when

Ẍ2L614b.0. ~A20!

But in contrast to the case of positiveb now there is only a
one-directional tunneling, to the side opposite the position
inhomogeneity~see Fig. 9!. Neglecting the back process o
mass trapping due to waves that are reflected from the dis
turning point and using the same method as was descr
above, we obtain for

2Ẍ2L6,4b,0 ~A21!

that current density has the form
et

ng
n

f

nt
ed

J5
4

L2
A3 D,

D5exp~22S!,

S5E
0

jo

p~ j̄ ! dj̄5A 1

ubuF uku1 1
2 ~11k2!lnS uk11

uku21D G ,
~A22!

wherejo5min$ujr
ou,ujl

ou%.
Combining Eqs.~A19! and ~A22! we obtain that the ra-

diation rate of the core mass is

dNs

dz
52J,

J5
8

L2
A3 S u~b!expH 2p

11k2

Ab
J

3coshH 2
1

Ab
@k1~11k2!arctan~k!#J

1u~2b!u~Ẍ2L614b!

3expH 22A 2

ubuF uku1 1
2 ~11k2!lnS uku11

uku21D G J D ,

~A23!

whereu(x) is the Heaviside step function. Expression~A23!
may be significantly simplified for limiting cases:

J5
8

L2
A335 expS 2

p

Ab
D if 2b/L3@uẌu

expS 2
4

3

2

uẌL3u
D if 2 ubu/L3!uẌu.

Thus, the radiation rate is controlled by two inertia forces:
the centrifugal forceb/L3 and by the inertia force caused b
the accelerated center-of-mass motionẌ.
ys.
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